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Thermostatistics of aq-deformed boson gas

A. Lavagno1 and P. Narayana Swamy2

1Dipartimento di Fisica and INFM, Politecnico di Torino, I-10129 Torino, Italy
2Physics Department, Southern Illinois University, Edwardsville, Illinois 62026

~Received 13 September 1999!

We show that a natural realization of the thermostatistics ofq bosons can be built on the formalism ofq
calculus, and that the entire structure of thermodynamics is preserved if we use an appropriate Jackson
derivative in place of the ordinary thermodynamics derivative. This framework allows us to obtain a general-
ized q boson entropy which depends on theq basic number. We study the idealq boson gas in the thermo-
dynamic limit which is shown to exhibit Bose-Einstein condensation with a higher critical temperature and a
discontinuous specific heat.

PACS number~s!: 05.30.2d, 05.20.2y, 05.70.2a
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I. INTRODUCTION

The spin-statistics theorem represents one of the fun
mental principles of physics, and establishes a strict conn
tion between quantum mechanics of many-body systems
quantum statistical mechanics. The complete symmetriza
or antisymmetrization of the many-body wave function~or
the commutation-anticommutation relations in the langu
of second quantization! reflects the contrasting nature o
bosons and fermions. Such quantum many-body statis
behavior affects the number of possible states of the sys
corresponding to the set of occupation numbers, and co
quently the collective statistical mechanics description.

The power of the statistical mechanics lies not only in
derivation of the general laws of thermodynamics but also
determining the meaning of all the thermodynamic functio
in terms of the microscopic interparticle interaction, and
providing a collective description of the equilibrium man
body system by means of the macroscopic variables suc
pressure and internal energy.

In the recent past there has been an increasing empha
quantum statistics different from the standard bosons
fermions. Since the pioneering work of Gentile and Gre
@1,2#, there have been many extensions beyond the stan
statistics~such as parastatistics, fractional statistics, quon
tistics, anion statistics, and quantum groups! which have be-
come topics of great interest because of the wide rang
applications envisaged, from cosmic strings and black ho
to the fractional quantum Hall effect and anionic physics
condensed matter@3#.

In the literature there are two principal methods of intr
ducing an intermediate statistical behavior. The first is
deform the quantum algebra of the commutatio
anticommutation relations, thus deforming the exchange
tor between permuted particles. The second method is b
on modifying the number of ways of assigning particles to
collection of states, and thus the statistical weight of
many-body system. The two methods are related, but a
connection between the quantum mechanics approach
the statistical mechanics approach is possible only wit
simultaneous knowledge of both.

One interesting realization of the first approach is
study of exactly solvable statistical systems which has led
PRE 611063-651X/2000/61~2!/1218~9!/$15.00
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a new algebra, theq-deformed algebra of creation and ann
hilation operators, usually calledq bosons (q fermions! or q
oscillators, and related to the general theory of quant
groups@4,5#. Many recent investigations in the theory ofq
bosons have provided much insight into both the mathem
cal development and theq-deformed thermodynamic
@6–14#. However, we believe that a fully consistent form
lation connecting the statistical mechanics and the thermo
namics~i.e., thermostatistics! of q bosons has been lacking
In particular it is desirable to derive an explicit expressi
for the entropy of theq bosons, which plays a central role i
the thermostatistics of the system and in the informat
theory. It is important to show that the full structure of the
modynamics ofq bosons is preserved and the closed loop
thermodynamic relations is satisfied. This is a nontrivial ta
because there is noa priori reason that the thermodynam
relations be automatically preserved for theq-deformed
structures.

A remarkable example is the Tsallis nonextensive st
stics@15#, based on a generalization of the Boltzmann-Gib
entropy, where the thermodynamic functions, such as
tropy and internal energy, are deformed, but the whole str
ture of thermodynamics is preserved. Although Tsallis no
extensive thermodynamics is inspired by the~multi!fractal
property of a system and does not embody quantum gr
theory, many papers are devoted to the formal analogies
tweenq oscillators and nonextensive statistics@16–19#. The
reason for this connection has to do with the common l
guage of the two deformed theories which is theq calculus.

The q calculus was introduced at the beginning of th
century by Jackson@20# in the study of the basic hypergeo
metric function, and it plays a central role in the represen
tion of the quantum groups@21#. In fact it has been shown
that it is possible to obtain a ‘‘coordinate’’ realization of th
Fock space of theq oscillators by using the deformed Jac
son derivative~JD! @22,23#. Moreover we observe that it ha
recently been shown that the JD can be identified with
generators of fractal and multifractal sets with discrete sy
metries@24#. Since the thermodynamic functions of none
tensive statistics are deformed by using the framework oq
calculus, we expectq calculus also to play an important rol
in q boson thermostatistics.

It is the purpose of this paper to show that a fully con
1218 ©2000 The American Physical Society
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PRE 61 1219THERMOSTATISTICS OF Aq-DEFORMED BOSON GAS
stent thermostatistics ofq boson gas can be obtained by u
ing an appropriate Jackson derivative rule in the stand
thermodynamics relations. In this framework, the who
structure of thermodynamics is preserved, and this enable
to derive all the thermodynamic quantities such as the
tropy, internal energy and the distribution function in t
q-deformed theory. Special attention is paid to the study
the idealq boson gas and the phenomenon ofq boson con-
densation.

This paper is organized as follows. In Sec. II we revie
theq boson algebra and outline the modification of the st
dard boson theory brought about by theq calculus. In Sec. III
we determine the distribution function of theq boson gas by
utilizing the standard definition of the thermal average of
operator. In Sec. IV we introduce a consistent prescript
for the use of the Jackson derivative in the thermodyna
relations. This allows us to obtain in Sec. V the generaliz
entropy forq bosons, and to derive this from the deform
statistical weight. Section VI describes the behavior of
ideal q boson gas and the phenomenon ofq boson conden-
sation. We report our conclusions in Sec. VII.

II. q BOSON ALGEBRA AND ITS REALIZATIONS

We shall briefly review the theory ofq-deformed bosons
defined by theq Heisenberg algebra of creation and anni
lation operators of bosons introduced by Biedenharn
McFarlane@4,5#, derivable through a map from SU(2)q . The
q boson algebra is determined by the following commutat
relations fora anda†, and the number operatorN; thus ~for
simplicity we omit the particle index!

@a,a#5@a†,a†#50, aa†2qa†a51, ~1!

@N,a†#5a†, @N,a#52a. ~2!

Theq Fock space spanned by the orthornormalized eig
statesun& is constructed according to

un&5
~a†!n

A@n#!
u0&, au0&50, ~3!

where theq basic factorial is defined as

@n#! 5@n#@n21#•••@1#, ~4!

and theq basic number@x# is defined in terms of theq de-
formation parameter

@x#5
qx21

q21
. ~5!

For the following discussion it is worth observing that theq
basic number satisfies the nonadditivity property

@x1y#5@x#1@y#1~q21!@x#@y#. ~6!

In the limit q→1, the q basic number@x# reduces to the
ordinary numberx and all the above relations reduce to t
standard boson relations.

The actions ofa anda† on the Fock stateun& are given by

a†un&5@n11#1/2un11&, ~7!
rd

us
n-

f

-

n
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n-

aun&5@n#1/2un21&, ~8!

Nun&5nun&. ~9!

From the above relations, it follows thata†a5@N# andaa†

5@N11#.
We observe that the Fock space of theq bosons has the

same structure as the standard bosons but with the rep
ment n!→@n#!. Moreover the number operator is nota†a
but can be expressed as the nonlinear functional relatioN
5 f (a†a) which can be explicitly written formally in the
closed form

N5
1

logq
log„11~q21!a†a…. ~10!

The transformation from Fock observables to the confi
ration space~Bargmann holomorphic representation! may be
accomplished by choosing@22,23#

a†5x, a5]x
(q) , ~11!

where]x
(q) is the JD@20#,

]x
(q) f ~x!5

f ~qx!2 f ~x!

x~q21!
, ~12!

which reduces to the ordinary derivative whenq goes to
unity; therefore, the JD occurs naturally inq-deformed struc-
tures@21#.

III. THERMAL AVERAGES AND STATISTICAL
DISTRIBUTION FOR q BOSON GAS

Several investigators have studied the equilibrium st
stical mechanics of the gas of noninteractingq bosons
@6–14#. We shall now briefly discuss some of the importa
results from these studies before introducing our formulat
of the thermostatistics ofq-deformed bosons.

In the grand canonical ensemble, the Hamiltonian of
noninteracting boson gas is expected to have the form@6–9#

H5(
i

~e i2m! Ni , ~13!

where the indexi is the state label,m is the chemical poten-
tial, ande i is the kinetic energy in the statei with the number
operatorNi . It should be mentioned that the form of th
Hamiltonian is not unique in the literature, where some a
thors introduced the Hamiltonian which involves the ba
number@Ni #. The advantage of the form in Eq.~13! is that it
clearly describes the number of particles in the spectrum
an integer number, and will allow us to generalize the la
of thermodynamics in a simple manner.

The thermal average of an operator is written in the st
dard form

^O&5
Tr~Oe2bH!

Z , ~14!

whereZ is the grand canonical partition function defined

Z5Tr~e2bH!, ~15!
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1220 PRE 61A. LAVAGNO AND P. NARAYANA SWAMY
andb51/T. Henceforward we shall set the Boltzmann co
stant to unity. Let us observe that the structure of the den
matrix r5e2bH and the thermal average are undeformed.
a consequence, the structure of the partition function is a
unchanged. We emphasize that this is not a trivial assu
tion, because its validity implicitly amounts to an unmodifi
structure of the Boltzmann-Gibbs entropy,

S5 logW, ~16!

whereW stands for the number of states of the system c
responding to the set of occupation numbers$ni%. Obviously
the numberW is modified in theq-deformed case. It may b
pointed out that in the case of nonextensiveq-deformed Tsal-
lis statistics, the structure of the entropy is deformed via
logarithm function@15#.

By using the definition in Eq.~5! of the q basic number,
the mean value of the occupation numberni can be calcu-
lated starting from the relation

@ni #5
1

ZTr~e2bHai
†ai !, ~17!

and after applying the cyclic property of the trace and us
the q boson algebra, it is easy to show that@6–8#

@ni #

@ni11#
5e2b(e i2m). ~18!

The explicit expression for the mean occupation number
be obtained by using the following property of the ba
number:

@ni11#5q@ni #11, ~19!

hence, forq real,

ni5
1

logq
logS z21ebe i21

z21ebe i2q
D , ~20!

wherez5ebm is the fugacity. It is easy to see that the abo
equation reduces to the standard Bose-Einstein distribu
when q→1. The total number of particles is given byN
5( ini .

IV. JACKSON DERIVATIVES IN q THERMODYNAMICS
RELATIONS

From the definition of the partition function@Eq. ~15!#,
and the Hamiltonian@Eq. ~13!#, it follows that the logarithm
of the partition function has the same structure as that of
standard boson

logZ52(
i

log~12ze2be i !. ~21!

This is due to the fact that we have chosen the Hamilton
to be a linear function of the number operator but it is n
linear in a†a, as seen from Eq.~10!. For this reason, the
standard thermodynamic relations in the usual form are ru
out. It is verified, for instance, that
-
ty
s
o
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r-

e
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n

n

e
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d

NÞz
]

]z
logZ. ~22!

As the coordinate space representation of theq boson al-
gebra is realized by the introduction of the JD@see Eq.~11!#,
we stress that the key point of theq-deformed thermostatis
tics is in the observation that the ordinary thermodynam
derivative with respect toz, must be replaced by the JD

]

]z
→D z

(q) , ~23!

where we have definedD z
(q) as the Jackson derivative up t

a constant~which goes to unity whenq→1)

D z
(q)5

q21

logq
]z

(q) . ~24!

Consequently, the number of particles in theq-deformed
theory can be derived from the relation

N5zD z
(q)logZ[(

i
ni , ~25!

whereni is the mean occupation number expressed in
~20!.

The usual Leibniz chain rule is ruled out for the JD, a
therefore derivatives encountered in thermodynamics m
be modified according to the following prescription. First w
observe that the JD applies only with respect to the varia
in the exponential form such asz5ebm or yi5e2be i. There-
fore for theq-deformed case, any thermodynamic derivati
of functions which depend onz or yi must be converted to
derivatives in one of these variables by using the ordin
chain rule, and then applying the JD with respect to the
ponential variable. For example, the internal energy in
q-deformed case can be written as

U52
]

]b
logZuz5(

i

]yi

]b
D yi

(q)log~12zyi !. ~26!

In this case we obtain the correct form of the internal ener

U5(
i

e ini , ~27!

whereni is the mean occupation number expressed in
~20!. This prescription is a crucial point of our approac
because this allows us to maintain the whole structure
thermodynamics and the validity of the Legendre transf
mations in a fully consistent manner.

V. ENTROPY OF THE q BOSON GAS
AND THE DEFORMED STATISTICAL WEIGHT

In light of the above discussion, we have the recipe
derive the entropy of theq bosons, which leads to

S52
]V

]T U
m

[ logZ1b(
i

]k i

]b U
m

D k i

(q)log~12k i !
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5 logZ1bU2bmN, ~28!

wherek i5ze2be i, U and N are the modified functions ex
pressed in Eqs.~26! and~25!, andV52T logZ is the ther-
modynamic potential.

Using Eqs.~18!–~20!, after some manipulations, we ob
tain the entropy as follows:

S5(
i

$2ni log@ni #1~ni11!log@ni11#2ni logq%. ~29!

The above entropy goes over to the standard boson
tropy in the limit q→1. It has a compact form which re
sembles the entropy of the standard boson but with the
pearance of theq basic numbers,@ni # and @ni11#, in the
argument of the logarithmic function and in the presence
the last term,2ni logq, which follows from nonadditivity
property of theq-basic number. In fact, using Eqs.~5! and
~19!, the term can be reexpressed as

ni logq5 log~@ni11#2@ni # !. ~30!

The expression for the entropy is very relevant to
statistical information about the number of possible sta
occupied by theq bosons, and gives us the desired conn
tion between the deformed quantum algebra and the quan
statistical behavior. It is interesting to observe that, in
classical limit, the entropy does not reduce to the stand
Boltzmann-Gibbs entropy (S52( ini logni), but remains de-
formed, except in the limitq→1. This result is similar to the
case of Greenberg’s infinite statistics and the quan
Boltzmann distribution obtained as a particular case of q
statistics@25#. The meaning of this is that the deformatio
exhibited in the entropy transcends the quantum nature b
built into the theory, somewhat similar to the case of non
tensive Tsallis statistics@15#. The origin of the connection
between the two different deformations (q-deformed quan-
tum groups and nonextensive statistics! is beyond the scope
of this paper, and will be reported elsewhere.

In order to assure consistency, we must now show that
extremization of the entropy with fixed internal energy a
number of particles leads to the correctq boson distribution
function. The extremum condition can be written as

d~S2bU1bmN!50, ~31!

whereb andbm play the role of Lagrange multipliers.
To perform such extremization in theq boson case, we

assume that the mean occupational number depends o
energy only as a function ofyi5e2be i, S5S@n(yi)#. Fol-
lowing our prescription described in Sec. IV on the use
the JD, the above extremization condition can be written

D yi

(q)~S2bU1bmN!dyi50. ~32!

Employing Eqs.~25!, ~27!, and~29!, and carrying out the JD
the extremization condition reduces to
n-

p-

f

e
s
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m

e
rd

m
n
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e
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s

n~qyi !S log
@n~qyi !11#

q @n~qyi !#
2 ẽ i D2n~yi !S log

@n~yi !11#

@n~yi !#
2 ẽ i D

1n~yi !logq2 log
@n~yi !11#

@n~qyi !11#
50, ~33!

whereẽ i5b(e i2m).
The algebraic simplification of the above equation is

tractable because of the complexity of the property ofq basic
numbers. However, it is possible to determine the solution
the equation by observing that for any functionf (x), there
exists a functional relationship

qf (x)5
@ f ~x!11#

@ f ~qx!11#
↔ @ f ~qx!11#

@ f ~qx!#
5q

@ f ~x!11#

@ f ~x!#
. ~34!

The notation↔ used here denotes that one relation impl
the other, and vice versa. The validity of the first relation
the above equation eliminates the last two terms in Eq.~33!,
and the validity of the second relation implies that the qu
tities in parentheses in Eq.~33! are equal, and sincen(qyi)
Þn(yi), for qÞ1, it follows that Eq.~33! is satisfied if

@n~yi !11#

@n~yi !#
5eẽ i. ~35!

The above relation is equivalent to Eq.~18!, which implies
the mean occupational numberni of Eq. ~20!.

As discussed earlier, the entropy provides the informat
about the statistical weightW which will be deformed in the
case ofq boson particles. To investigate this deformation w
begin with the basic relation for the entropy,

S5 logWq , ~36!

whereWq is the deformed statistical weight. Just as the
dinary factorialn! is replaced by theq basic factorial@n#! in
the constructionq Fock space@see Eq.~3!#, we assume tha
this substitution also prevails in the expression for the sta
tical weight, and hence we require

Wq5)
i

@ni1gi21#!

@ni #! @gi21#!
, ~37!

wheregi denotes the number of subcell levels. The reas
for this modification lies in the definition of the binomia
coefficient in theq combinatorial calculus@21#.

Observing that@n#! for largen, is given by theq Stirling
approximation forq.1 ~see the Appendix for the explici
derivation!

log@n#!'n log@n#2
n2

2
logq, ~38!

entropy~36! can be written as

S5(
i

H ni log
@ni1gi #

@ni #
1gi log

@ni1gi #

@gi #
2ni gi logqJ . ~39!

This is similar to the structure of the entropy given by E
~29!, and therefore the extremization procedure can be
ried out as was done before, and we derive the same co
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1222 PRE 61A. LAVAGNO AND P. NARAYANA SWAMY
tion as in Eq.~35! except for the factorgi . We observe,
however, that the partition operation into subcells is not
gorously true in this context because of the nonextens
property~nonadditivity of theq basic number! of the expres-
sion for the entropy in Eq.~29!. For this reason, the mea
occupation number derived from Eq.~39! is not rigorously
proportional to the factorgi . The nonextensivity implies tha
the result for the mean occupation number is not entir
independent of the manner in which the energy levels of
particles are grouped into cells.

VI. IDEAL q BOSE GAS AND q BOSON CONDENSATION

We shall now proceed to study the thermodynamic beh
ior of an idealq Bose gas and the phenomenon ofq boson
condensation. For a large volume~and a large number o
particles!, the sum over all single particle energy states c
be transformed to an integral over the energy, as

(
i

f ~xi !⇒
2

Ap

V

l3E0

`

dx x1/2f ~x!, ~40!

where x5be, e5p2/2m is the kinetic energy, andl
5h/(2pmT)1/2 is the thermal wavelength.

We anticipate that the ground state will be associated w
a macroscopically large occupation number rather tha
zero weight due toq boson condensation. For this reason
need to isolate the ground state and include the contribu
from all the other states in the integral. The number den
of particles can thus be written as

N

V
5

2

Ap

1

l3E0

`

dx x1/2
1

logq
logS z21ex21

z21ex2q
D 1

n0

V
,

~41!

wheren0 is the mean occupational number of the zero m
mentum state:

n05
1

logq
logS 12z

12qzD . ~42!

As in the standard boson case, we need to set the rang
fugacity z which will correspond to a non-negative occup
tion number. In the case ofq bosons we see that the cond
tion is z,1/q for q.1 and z,1 for q,1. It should be
pointed out that we also have to require the existence of
JD of the mean occupation number which is encountere
the calculation of thermodynamic quantities such as the s
cific heat and this changes the upper bound of the fugaciz.
We thus find the correct condition to bez,zq , where we
have defined

zq5H q22 if q.1

1 if q,1.
~43!

We will have q boson condensation when the critical com
bination of density and temperature occurs such that
fugacity will reach its maximum valuez5zq .

Following the prescription of the JD in theq-deformed
thermodynamics derivatives, we obtain the expression
pressure above the critical point:
-
e

y
e

v-

n

h
a

n
ty

-

of

e
in
e-

e

r

P

T U
.

5
1

l3
g5/2~z,q!, ~44!

and below the critical point we have

P

T U
,

5
1

l3
g5/2~zq ,q!. ~45!

A similar expression can be found for the number of partic
above the critical point:

N

V U
.

5
1

l3
g3/2~z,q!; ~46!

and below the critical point we have

N

V U
,

5
n0

V
1

1

l3
g3/2~zq ,q!. ~47!

In the above equations we have defined theq-deformed
gn(z,q) functions as

gn~z,q!5
1

G~n!
E

0

`

dx xn21
1

logq
logS z21ex21

z21ex2q
D

[
1

logq S (
k51

`
~zq!k

kn11
2 (

k51

`
zk

kn11D . ~48!

In the limit q→1, the deformedgn(z,q) functions reduce
to the standardgn(z). In Figs. 1 and 2 we present the beh
vior of g3/2(z,q) andg5/2(z,q) as a function ofz for different
values of the parameterq.

The internal energy can be calculated considering
thermodynamic limit of Eq.~26! by means of the JD recipe
Using the expression for the pressure@Eq. ~44!#, it is easy to
verify that as in the undeformed case, the following we
known relation is satisfied for theq bosons:

FIG. 1. The behavior ofg3/2(z,q) as a function ofz for different
values ofq. The valueq51 corresponds to the standardg3/2(z)
boson function. Forq.1 the upper bound ofz is 1/q2 and for q
,1 it is unity @see Eq.~43!# due to the existence of the JD of th
gn(z,q).
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U5
3

2
PV. ~49!

We can calculate the critical temperature by using
same method as in the standard boson case. Comparin
ratio of the critical temperatureTc

q of the q-deformed gas
with that of the standard bosonTc at the same density, w
find

Tc
q

Tc
5S g3/2~1!

g3/2~zq ,q! D
2/3

, ~50!

whereg3/2(1)52.61 is the value of the undeformed functio
whenz51. In Fig. 3 we show the plot of the above ratio
a functionq. We observe that the critical temperature of t
q boson is always higher than the standard boson, and
q.1 there is a rapid increase of the critical temperatureTc

q

for small values ofq. For example, forq51.01,Tc
q increases

by 18%, and, forq51.1, Tc
q increases by 75% with respe

to the standard value.
Applying the thermodynamic limit to the entropy of theq

boson in Eq.~29!, we obtain the entropy per unit volum
above the critical point with a structure similar to that of t
standard boson,

FIG. 2. Same as Fig. 1 for the functiong5/2(z,q).

FIG. 3. The ratioTc
q/Tc of the deformed critical temperatureTc

q

and the undeformed (q51) Tc as a function ofq.
e
the

or

S

V U
.

5
1

l3 S 5

2
g5/2~z,q!2g3/2~z,q!logzD , ~51!

and below the critical point,

S

V U
,

5
5

2

1

l3
g5/2~zq ,q!. ~52!

Let us observe that the generalizedq boson entropy obeys
the third law of thermodynamics. In fact, in Eq.~52!,
g5/2(zq ,q) has a finite value that depends onq, and the en-
tropy approaches zero in the limit of zero temperature.

As in ordinary Bose condensation, it is possible to sh
that in q boson condensation a Clausius-Clapeyron equa
also holds, and first order phase transition occurs. In fact
easy to see that below the critical point the following equ
tion is satisfied:

dP

dT U
,

5
Lq

Tvc
, ~53!

wherevc is the critical specific volume defined as

vc5
l3

g3/2~zq ,q!
, ~54!

Lq is theq-deformed latent heat given by

Lq5TDs5
5

2
T

g5/2~zq ,q!

g3/2~zq ,q!
, ~55!

andDs is the difference in specific entropy across the tra
sition region.

We now proceed to calculate the heat capacity of thq
boson gas, starting from the thermodynamic definition

Cv5
]U

]T U
V,N

. ~56!

For this purpose we first need the derivative of the fug
city with respect toT ~or b), keepingV andN constant. To
apply the JD prescription described earlier in Sec. IV,
start from the expression for the total number of partic
@Eq. ~25!# and the identity~since the number of particles i
kept constant!

]

]b (
i

logS 12k i

12qk i
D50, ~57!

wherek i5ze2be i. This identity can be rewritten accordin
to our JD recipe as

(
i

]k i

]b
Dk i

(q)logS 12k i

12qk i
D50, ~58!

and now, evaluating in the limitV→`, we obtain

1

z

]z

]b U
V,N

5
3

2

1

b

D z
(q)g5/2~z,q!

D z
(q)g3/2~z,q!

. ~59!
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We shall now proceed to calculate the heat capac
Using the discrete expression of internal energy~26!, Eq.
~56! can be expressed as

Cv52b2(
i

e i

]k i

]b

1

logq
Dk i

(q)logS 12k i

12qk i
D . ~60!

Carrying out the limitV→` and utilizing Eqs.~46! and~59!,
we obtain the following expression for the specific heat
particle above the critical point,

Cv

N U
.

5
15

4

zD z
(q)g7/2~z,q!

g3/2~z,q!

2
9

4

zD z
(q)g5/2~z,q!

g3/2~z,q!

D z
(q)g5/2~z,q!

D z
(q)g3/2~z,q!

, ~61!

and, similarly, the specific heat below the critical point,

Cv

N U
,

5
15

4

zD z
(q)g7/2~z,q!uz5zq

l3/v
, ~62!

wherev is the specific volume below the critical temperatu
that can be expressed, by means of Eq.~47!, in terms of the
critical temperatureTc as follows:

v

l3
5

1

g3/2~z,q! S T

Tc
qD 3/2

. ~63!

The above expressions have the same structure as th
the undeformed boson, but the difference arises from
property zD z

(q)gn(z,q)Þgn21(z,q), where the equality is
true for an ordinary derivative only. From this observation
is easy to see that in the limitq→1 the specific heat reduce
to the well-known undeformed result.

As usual, the classical limit can be achieved consider
the limit z→0. In this limit the deformedgn(z,q) functions
reduce to

gn~z,q!→ q21

logq
z, ~64!

and, from Eq.~61!, the ‘‘classical’’ limit of the specific heat
per particle number reduces to

Cv

N U
cl

5
3

2

q21

logq
. ~65!

As discussed before in the context of the entropy, theq de-
formation also persists in the classical limit.

We expect small deviations from undeformed behavior
the experimental observables; therefore, only values oq
close to the standard valueq51 are physically significant. A
small deformation leads to a negligible departure from
high temperature limit of the specific heat, but implies
sharp deformation of the behavior of the specific heat in
range of the critical temperature. To exemplify this featu
in Fig. 4 we plot the specific heat as a function ofT/Tc

q for
q51.05. We have chosen a value ofq in the rangeq.1
because this region appears particularly interesting wit
y.

r

t of
e

t

g

n

e

e
,

a

higher critical temperature for smallq ~see Fig. 3!. For this
value of q the critical temperatureTc

q is increased by 48%
relative to the standard boson case. We observe that foq
Þ1, the specific heat shows a discontinuousl point beha-
vior. This is a characteristic ofq deformation, as has bee
observed in other investigations@13,14#.

Using Eqs.~61! and~62! we can calculate the jump in th
specific heatD(Cv /N) at the critical temperature as a fun
tion of q. In Fig. 5 we plot this behavior. We observe that t
jump is an increasing function ofq. Although the model that
we have investigated is based on the Hamiltonian of non
teracting particles, we note that the jump in the specific h
is of the order of the experimental value in the case of B
condensation in87Rb atoms@26#.

VII. CONCLUSION

The outstanding problem in the theory ofq bosons has
been the lack of a demonstration that the thermodyna
relations follow from theq calculus framework. In this pa
per, we have shown that the whole structure of thermo
namics is preserved if the ordinary derivatives are repla
by the Jackson derivatives following the prescription d
scribed in Sec. IV. We establish a fully consistent set
relations between the thermodynamic functions~partition
function, internal energy, and mean occupation number! and
this enables us to derive the entropy ofq bosons. The

FIG. 4. The specific heatCv /N as a function ofT/Tc
q for q

51.05.

FIG. 5. The jump in the specific heatD(Cv /N) at the critical
temperatureTc

q as a function ofq.
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q-deformed entropy so obtained has been shown to fol
from the deformed statistical weight as a consequence o
q combinatorial calculus known in the literature@21#. This
result represents a close connection between the qua
deformed algebra and the quantum statistical approach.

The expression for the entropy is nonextensive becaus
the nonadditive property~6! of theq basic numbers. We find
that for qÞ1, the entropy remains deformed in the classi
limit as is also true of the other thermodynamic function
This can be understood by observing that the deforma
arises from quantum groups but the nature of the defor
tion is inherently contained in the theory. A similar feature
found in the nonextensive Tsallis statistics and infinite sta
tics where the deformation persists in the classical li
@15,25#.

In this framework, we have studied the basic properties
the ideal q Bose gas in the thermodynamic limit and th
phenomenon ofq-boson condensation. We find that the cri
cal temperature of theq boson is always higher than that o
the standard boson. The behavior of the specific heat exh
a discontinuity at the transition point, which is in qualitativ
agreement, for values ofq close to unity, with experimenta
data in the case of a dilute gas of rubidium atoms@26#.

We observe that for an ideal Bose gase the specific he
continuous. On the basis of the Ginsburg-Landau theory ol
points, a discontinuous behavior of the specific heat imp
a broken symmetry in the transition characterized by an
der parameter. The deformation of the algebra inq boson
theory implies a broken permutation symmetry of the st
dard boson wave function. Therefore, the recent experim
tal data@26# can be interpreted as an indication of the effe
due toq deformation in Bose-Einstein condensation, whe
the order parameter of the phase transition depends onq.

Although we employed the nonsymmetricq deformation
in this investigation, all the results can be easily extended
using the symmetricq calculus (q↔q21). We have confined
our study to theq deformation of bosons. It may be worth
while to investigate the theory ofq fermions in this frame-
work.

Our theoretical framework and the results appear to p
vide a deeper insight into the behavior of theq boson gas.
We believe that the results derived here may be relevan
future investigations, and may be of interest from theoret
as well as experimental point of view.
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APPENDIX

Here we present a derivation for the approximation oq
basic factorial@n#! for large n, which is the analog of the
Stirling approximation. This is employed in the derivation
the entropy in Sec. V. We limit our discussion to the case
q.1.

Starting from the definition~4! of the @x#! and using the
property~19! of the q basic number, it is possible write an
product factor contained in the@x#! as follows:

@n#5@n#,

@n21#5q21@n#2q21,

@n22#5q22@n#2q222q21,

@n23#5q23@n#2q232q222q21,
~A1!

A

@n2k#5q2k@n#2q2k2q2k112•••2q21,

A

@1#5q2n11@n#2q2n112q2n122•••2q21.

For n@1, the leading term is seen to be

@n#!'@n#nq2(
k50

n21

kS 12
n

qnD , ~A2!

where the first term arises from the product of the first te
in each of the equations~A1!, and the second term is th
result of the sum of the dominant corrections.

The above equation can be rewritten as

@n#!'@n#nq2n(n21)/2S 12
n

qnD . ~A3!

Taking the logarithm on both sides, we have

log@n#!'n log@n#2
n2

2
logq2

n

qn
, ~A4!

where we observe that the last term, which follows from t
approximation: log(12n/qn)'2n/qn, is very small and sig-
nificant only for q very close to unity (uq21u,1023). We
neglect this term in the derivation of the entropy in Sec.

We have verified numerically that the derivedq Stirling
approximation is very good for largen. For example, forq
51.5 it is correct to an error of 1.8% forn5100, 0.2% for
n51000, and 0.04% forn55000.
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