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We show that a natural realization of the thermostatisticq bbsons can be built on the formalism @f
calculus, and that the entire structure of thermodynamics is preserved if we use an appropriate Jackson
derivative in place of the ordinary thermodynamics derivative. This framework allows us to obtain a general-
ized g boson entropy which depends on thdasic number. We study the ideglboson gas in the thermo-
dynamic limit which is shown to exhibit Bose-Einstein condensation with a higher critical temperature and a
discontinuous specific heat.

PACS numbd(s): 05.30—~d, 05.20-y, 05.70—a

[. INTRODUCTION a new algebra, thg-deformed algebra of creation and anni-
hilation operators, usually callegilbosons ¢ fermiong or g

The spin-statistics theorem represents one of the fundasscillators, and related to the general theory of quantum
mental principles of physics, and establishes a strict connegroups[4,5]. Many recent investigations in the theory gf
tion between quantum mechanics of many-body systems artitbsons have provided much insight into both the mathemati-
guantum statistical mechanics. The complete symmetrizatiooal development and theg-deformed thermodynamics
or antisymmetrization of the many-body wave functimm  [6—14]. However, we believe that a fully consistent formu-
the commutation-anticommutation relations in the languagdation connecting the statistical mechanics and the thermody-
of second quantizationreflects the contrasting nature of namics(i.e., thermostatistigsof g bosons has been lacking.
bosons and fermions. Such quantum many-body statisticah particular it is desirable to derive an explicit expression
behavior affects the number of possible states of the systefior the entropy of they bosons, which plays a central role in
corresponding to the set of occupation numbers, and conséhe thermostatistics of the system and in the information
guently the collective statistical mechanics description. theory. It is important to show that the full structure of ther-

The power of the statistical mechanics lies not only in themodynamics ofy bosons is preserved and the closed loop of
derivation of the general laws of thermodynamics but also ithermodynamic relations is satisfied. This is a nontrivial task
determining the meaning of all the thermodynamic functionsbecause there is n@ priori reason that the thermodynamic
in terms of the microscopic interparticle interaction, and inrelations be automatically preserved for tlgedeformed
providing a collective description of the equilibrium many- structures.
body system by means of the macroscopic variables such as A remarkable example is the Tsallis nonextensive stati-
pressure and internal energy. stics[15], based on a generalization of the Boltzmann-Gibbs

In the recent past there has been an increasing emphasiséntropy, where the thermodynamic functions, such as en-
guantum statistics different from the standard bosons anttopy and internal energy, are deformed, but the whole struc-
fermions. Since the pioneering work of Gentile and Greerture of thermodynamics is preserved. Although Tsallis non-
[1,2], there have been many extensions beyond the standaexktensive thermodynamics is inspired by ttmeulti)fractal
statistics(such as parastatistics, fractional statistics, quon staproperty of a system and does not embody quantum group
tistics, anion statistics, and quantum grouphich have be- theory, many papers are devoted to the formal analogies be-
come topics of great interest because of the wide range dfveenq oscillators and nonextensive statistjd$—19. The
applications envisaged, from cosmic strings and black holeseason for this connection has to do with the common lan-
to the fractional quantum Hall effect and anionic physics inguage of the two deformed theories which is thealculus.
condensed mattg¢B]. The g calculus was introduced at the beginning of this

In the literature there are two principal methods of intro-century by Jacksofi20] in the study of the basic hypergeo-
ducing an intermediate statistical behavior. The first is tometric function, and it plays a central role in the representa-
deform the quantum algebra of the commutation-tion of the quantum group1]. In fact it has been shown
anticommutation relations, thus deforming the exchange facthat it is possible to obtain a “coordinate” realization of the
tor between permuted particles. The second method is basé&wck space of thg oscillators by using the deformed Jack-
on modifying the number of ways of assigning particles to ason derivativeJD) [22,23. Moreover we observe that it has
collection of states, and thus the statistical weight of therecently been shown that the JD can be identified with the
many-body system. The two methods are related, but a fuljenerators of fractal and multifractal sets with discrete sym-
connection between the guantum mechanics approach amdetries[24]. Since the thermodynamic functions of nonex-
the statistical mechanics approach is possible only with &ensive statistics are deformed by using the frameworf of
simultaneous knowledge of both. calculus, we exped calculus also to play an important role

One interesting realization of the first approach is thein q boson thermostatistics.
study of exactly solvable statistical systems which has led to It is the purpose of this paper to show that a fully consi-
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stent thermostatistics @f boson gas can be obtained by us- a|n)=[n]1’2|n— 1), (8)
ing an appropriate Jackson derivative rule in the standard
thermodynamics relations. In this framework, the whole N|n)=n|n). 9

structure of thermodynamics is preserved, and this enables us
to derive all the thermodynamic quantities such as the enFrom the above relations, it follows thata=[N] andaa’
tropy, internal energy and the distribution function in the =[N+1].
g-deformed theory. Special attention is paid to the study of We observe that the Fock space of th&osons has the
the idealq boson gas and the phenomenongdfoson con- Same structure as the standard bosons but with the replace-
densation. mentn! —[n]!. Moreover the number operator is nata

This paper is organized as follows. In Sec. Il we reviewbut can be expressed as the nonlinear functional reldion
the g boson algebra and outline the modification of the stan=f(a'a) which can be explicitly written formally in the

dard boson theory brought about by thealculus. In Sec. Il closed form

we determine the distribution function of tiggboson gas by

utilizing the standard defi_nition of the therr_nal average _of an N= 1 log(1+ (q—1)a'a). (10)
operator. In Sec. IV we introduce a consistent prescription logq

for the use of the Jackson derivative in the thermodynamic ) )
relations. This allows us to obtain in Sec. V the generalized | he transformation from Fock observables to the configu-

entropy forg bosons, and to derive this from the deformed'ation spac¢Bargmann holomorphic representationay be
statistical weight. Section VI describes the behavior of theéccomplished by choosir§2,23

ideal g boson gas and the phenomenongdfoson conden- al=x  a—g® (11)
sation. We report our conclusions in Sec. VII. ' x

wheres? is the JD[20],
II. g BOSON ALGEBRA AND ITS REALIZATIONS

We shall briefly review the theory af-deformed bosons JDf(x)= M
defined by theg Heisenberg algebra of creation and annihi- x(q—1)

lation operators of bosons introduced by Biedenharn ang\/hiCh reduces to the ordinary derivative whengoes to

McFarlane{4,5], d_erivable t_hrough amap from SU(@)The . unity; therefore, the JD occurs naturallygrdeformed struc-
g boson algebra is determined by the following commutauon[ures[zﬂ

relations fora anda’, and the number operatdt; thus (for
simplicity we omit the particle index

(12

Ill. THERMAL AVERAGES AND STATISTICAL
[a,a]:[aT,aT]zoy aaT_ana: 1, (1) DISTRIBUTION FOR q BOSON GAS

Several investigators have studied the equilibrium stati-
stical mechanics of the gas of noninteractingbosons
n[6—14]. We shall now briefly discuss some of the important
results from these studies before introducing our formulation
of the thermostatistics af-deformed bosons.

[N,a"]=a'", [N,a]=-a. 2)

Theqg Fock space spanned by the orthornormalized eige
stategn) is constructed according to

(ahn In the grand canonical ensemble, the Hamiltonian of the
In)= WIO}, al0)=0, (3 noninteracting boson gas is expected to have the @9
where theq basic factorial is defined as H ZZ (€—m) Nj, (13
[n]!=[n][n—1]---[1], 4

where the index is the state labely is the chemical poten-
and theq basic numbefx] is defined in terms of the de-  tial, ande; is the kinetic energy in the statavith the number

formation parameter operatorN; . It should be mentioned that the form of the
Hamiltonian is not unique in the literature, where some au-
g—1 thors introduced the Hamiltonian which involves the basic
[x]= q-1° (5) number N;]. The advantage of the form in E(L3) is that it

clearly describes the number of particles in the spectrum by
For the following discussion it is worth observing that the an integer number, and will allow us to generalize the laws

basic number satisfies the nonadditivity property of thermodynamics in a simple manner.
The thermal average of an operator is written in the stan-
[x+y]=[x]+[y]+(a—DIx]Iy]. (6)  dard form
In the limit q—1, the q basic numbefx] reduces to the Tr(Oe Pt
ordinary numbex and all the above relations reduce to the (0)= — =z (14)

standard boson relations.
The actions o anda’ on the Fock statgn) are given by  where Z is the grand canonical partition function defined as

a'lny=[n+1]"4n+1), ) Z=Tr(e PM), (15
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and 8= 1/T. Henceforward we shall set the Boltzmann con- 9
stant to unity. Let us observe that the structure of the density N#z--log 2. (22)
matrix p=e~ A" and the thermal average are undeformed. As

a consequence, the structure of the partition function is also ag the coordinate space representation ofghmsson al-
unchanged. We emphasize that this is not a trivial asSUMpyenra is realized by the introduction of the [2e Eq(11)],
tion, because its validity implicitly amounts to an unmodified e stress that the key point of tiedeformed thermostatis-
structure of the Boltzmann-Gibbs entropy, tics is in the observation that the ordinary thermodynamics
derivative with respect ta, must be replaced by the JD
S=logW, (16) p p y

J
whereW stands for the number of states of the system cor- __,ng)' (23

responding to the set of occupation numbgrg. Obviously oz
the numbeW is modified in theg-deformed case. It may be
pointed out that in the case of nonextengivadeformed Tsal-
lis statistics, the structure of the entropy is deformed via th
logarithm function[15]. 1
By using the definition in Eq(5) of the q basic number, D(q):q_ (a) 24
. V4 aZ ( )
the mean value of the occupation numipgrcan be calcu- logq
lated starting from the relation

where we have define® (¥ as the Jackson derivative up to
& constanfwhich goes to unity wheg—1)

Consequently, the number of particles in theleformed
1 o theory can be derived from the relation
[ni]=ZTr(e”aja), 17
Z 1

N=zD@logz=>, n;, (25
and after applying the cyclic property of the trace and using [

the g boson algebra, it is easy to show tli&t8] ) ) ]
wheren; is the mean occupation number expressed in Eq.

[n;] o (20).
—[n_Jrll] =e flaw, (18 The usual Leibniz chain rule is ruled out for the JD, and

' therefore derivatives encountered in thermodynamics must
The explicit expression for the mean occupation number caRe modified according to the following prescription. First we

be obtained by using the following property of the basicobserve that the JD applies only with respect to the variable
number: in the exponential form such as=e#* or y;=e~#¢. There-

fore for theg-deformed case, any thermodynamic derivative
[n+1]=q[n]+1, (19 of functions which depend omor y; must be converted to
derivatives in one of these variables by using the ordinary
hence, forq real, chain rule, and then applying the JD with respect to the ex-
ponential variable. For example, the internal energy in the
1 (zleﬁei_ 1) g-deformed case can be written as

n; (20

= I

logg 9 z tefi—q)’

J Wi @
_ o U=-— ﬁlogzhzz %Dyi log(1—2zy,). (26)
wherez=eP* is the fugacity. It is easy to see that the above !
equation reduces to the standard Bose-Einstein distribution hi btain th f fthe | |
when g—1. The total number of particles is given by In this case we obtain the correct form of the internal energy,
ZEini .
U:z €n;, (27)
IV. JACKSON DERIVATIVES IN q THERMODYNAMICS '

RELATIONS wheren; is the mean occupation number expressed in Eq.

From the definition of the partition functiofEq. (15)],  (20). This prescription is a crucial point of our approach
and the HamiltoniafiEq. (13)], it follows that the logarithm because this allows us to maintain the whole structure of

of the partition function has the same structure as that of thehermodynamics and the validity of the Legendre transfor-
standard boson mations in a fully consistent manner.

V. ENTROPY OF THE q BOSON GAS

= — J— 7BE'
log 2 Z log(1-ze 7). @D AND THE DEFORMED STATISTICAL WEIGHT

In light of the above discussion, we have the recipe to

This is due to the fact that we have chosen the Hamiltoniar&erive the entropy of the bosons, which leads to

to be a linear function of the number operator but it is not
linear in a'a, as seen from Eq(10). For this reason, the 90 Ik
standard thermodynamic relations in the usual form are ruled ~ S=— —| =log Z+ 8>, —| DPlog(1—«;)
out. It is verified, for instance, that a w T IB P
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=log Z+ U~ BN, RN LA _;_) —n(y-)(lo [nyp+1] ~
g na@y)T @ % Iy @

where k;=ze #¢, U andN are the modified functions ex- [n(y)+1]

pressed in Eq926) and(25), andQ)=—T log Z is the ther- +n(yi)logq—logy'—= , (33)

modynamic potential. [n(ay;)+1]

Using EQs.(18)—(20), after some manipulations, we ob-

tain the entropy as follows: wheree=p(e—n). S
The algebraic simplification of the above equation is in-

tractable because of the complexity of the property bésic
S= —nilog n:1+(n:+1)log n; + 11— n:loa q?. 29 numbers. However, it is possible to determine the solution of
Z {=niloglm] +(n+1)login; + 11 -nilogaj @9 the equation by observing that for any functibfx), there
exists a functional relationship

The above entropy goes over to the standard boson en-
tropy in the limitg—21. It has a compact form which re- f(x) — [f(x)+1] PN [f(ax)+1] — [fO0+1]
sembles the entropy of the standard boson but with the ap- [f(ax)+1] [f(ax)] [F()]

pearance 0:: tﬁqlba5|_chnu_m?ers[ni] ang[niv;ll], in the The notation— used here denotes that one relation implies
argument of the logarit mic unction and in the presence 0Ehe other, and vice versa. The validity of the first relation in
the last term,—nilog_q, which follows fro”? nonadditivity the above equation eliminates the last two terms in(B8),
property of theg-basic number. In fact, using Eqe) and and the validity of the second relation implies that the quan-
(19), the term can be reexpressed as tities in parentheses in EG33) are equal, and since(qy;)
#n(y;), for q# 1, it follows that Eq.(33) is satisfied if

[n(y;)+1] _
The expression for the entropy is very relevant to the [n(yi)]
statistical information about the number of possible statesrhe above relation is equivalent to EQ8), which implies

occupied by they bosons, and gives us the desired connec-

tion between the deformed quantum algebra and the quantumeAgz?Sncgggggzt;E:rl ?ﬁ?gﬁ{g Eq.rf)zv(i)gj.es the information
statistical behavior. It is interesting to observe that, in the ! Py P

classical limit, the entropy does not reduce to the standar8bOUt thebStat'St'Ca{.V\lle'gh_:f/ Wh'Ch t\'M” tbithfgrrfned ":. the
Boltzmann-Gibbs entropyS= — =;n;log n;), but remains de- ct;asg qu. hoshonbpa( Ic ef' 0 Tveshlga € this deformation we
formed, except in the limit)— 1. This result is similar to the egin with the basic relation for the entropy,
case of Greenberg's infinite statistics and the quantum S=logW,, (36)
Boltzmann distribution obtained as a particular case of quon
statistics[25]. The meaning of this is that the deformation whereW,, is the deformed statistical weight. Just as the or-
exhibited in the entropy transcends the quantum nature but idinary factorialn! is replaced by the basic factoria[n]! in
built into the theory, somewhat similar to the case of nonexthe constructiorg Fock spacgsee Eq.3)], we assume that
tensive Tsallis statistickl5]. The origin of the connection this substitution also prevails in the expression for the statis-
between the two different deformationg-fleformed quan- tical weight, and hence we require
tum groups and nonextensive statistissbeyond the scope
of this paper, and will be reported elsewhere. w11 [ni+gi—1]! 37

In order to assure consistency, we must now show that the N In]'gi— 1]t
extremization of the entropy with fixed internal energy and
number of particles leads to the correcboson distribution  whereg; denotes the number of subcell levels. The reason

. (39

nilogg=log([nj+1]—[n;]). (30
(35

function. The extremum condition can be written as for this modification lies in the definition of the binomial

coefficient in theq combinatorial calculu§21].
8(S—BU+ BuN)=0, (31) Observing thain]! for largen, is given by theq Stirling
approximation forqg>1 (see the Appendix for the explicit
o derivation
where 8 and Bu play the role of Lagrange multipliers.
To perform such extremization in thep boson case, we n2
assume that the mean occupational number depends on the login]!~nlogin]— —logq, (39)

energy only as a function of,=e #¢, S=9[n(y;)]. Fol-

lowing our prescription described in Sec. IV on the use ofentropy(36) can be written as
the JD, the above extremization condition can be written as

S=2, n-IogMJrg-logM—n- gilogq (39
D{P(S—BU+BuN)8y,=0. (82 L L e A B
This is similar to the structure of the entropy given by Eq.

Employing Eqs(25), (27), and(29), and carrying out the JD, (29), and therefore the extremization procedure can be car-
the extremization condition reduces to ried out as was done before, and we derive the same condi-
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tion as in Eq.(35) except for the factog;. We observe, gz,2(z,q)
however, that the partition operation into subcells is not ri-
gorously true in this context because of the nonextensive
property(nonadditivity of theq basic numbeérof the expres-
sion for the entropy in Eq(29). For this reason, the mean
occupation number derived from E9) is not rigorously 1.5
proportional to the factog; . The nonextensivity implies that

the result for the mean occupation number is not entirely 1

. ) . =1.2 -
independent of the manner in which the energy levels of the d q=0.8
particles are grouped into cells. o s
VI. IDEAL q BOSE GAS AND g BOSON CONDENSATION

0 :2 0 4 0 6 0 8 l z

We shall now proceed to study the thermodynamic behav-
ior of an idealq Bose gas and the phenomenongaboson FIG. 1. The behavior ofi5,(z,q) as a function of for different
condensation. For a large volunitand a large number of values ofg. The valueq=1 corresponds to the standagg,(z)
particles, the sum over all single particle energy states carboson function. Fog>1 the upper bound of is 1/g? and forq

be transformed to an integral over the energy, as <1 it is unity [see Eq.43)] due to the existence of the JD of the
gn(z.9).
> f(x-):i Xfwolx XY2f (x) (40)
RN ' Pl 1 »
T >—F95/2(Z,Q), (44)

where x=8¢, e=p?2m is the kinetic energy, anch
=h/(2mmT)? is the thermal wavelength. . .

We anticipate that the ground state will be associated witr‘;’lnd below the critical point we have
a macroscopically large occupation number rather than a

zero weight due t@ boson condensation. For this reason we E =£g (2,9) (45)
need to isolate the ground state and include the contribution T|_ )\ ¥R
from all the other states in the integral. The number density
of particles can thus be written as A similar expression can be found for the number of particles
above the critical point:
N 21 de w1 z7le* -1 o
= —=— X X ) —,
Vo JmadJo logq 0 z e—q/ V 1
(41) v =ng/z(z,q): (46)
>

wheren, is the mean occupational number of the zero mo- - ]
mentum state: and below the critical point we have

1
=——-Io
logq

L
=V +F93/2(Zq,f31)- (47)

No g

1-z 42 N
1-qz)° 42 Vv

<

As in the standard boson case, we need to set the range of
fugacity z which will correspond to a non-negative occupa-
tion number. In the case @f bosons we see that the condi-
tion is z<1/g for g>1 andz<1 for q<1. It should be 1
pointed out that we also have to require the existence of the 0.(2,0) = wadx o1 Iog( 7z leX— 1)
JD of the mean occupation number which is encountered in me I'(n)Jo logq 7z le*—q
the calculation of thermodynamic quantities such as the spe-
cific heat and this changes the upper bound of the fugacity % Koo K

- (Z(ZQ)—E . ) (48)
have defined logq '

In the above equations we have defined tpgeformed
9n(z,9) functions as

We thus find the correct condition to be<zq, where we

K=1 kn+l K=1 kn+1
;- q® if g>1 43) In the limit g— 1, the deformedy,(z,q) functions reduce
a1 if g<l1. to the standard),(z). In Figs. 1 and 2 we present the beha-

vior of g3(z,q) andgs;(z,q) as a function of for different
We will have g boson condensation when the critical com- values of the parametey.
bination of density and temperature occurs such that the The internal energy can be calculated considering the
fugacity will reach its maximum value=z,. thermodynamic limit of Eq(26) by means of the JD recipe.
Following the prescription of the JD in thgdeformed Using the expression for the pressiiEg). (44)], it is easy to
thermodynamics derivatives, we obtain the expression foverify that as in the undeformed case, the following well-
pressure above the critical point: known relation is satisfied for thg bosons:
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gs/2(z,q) S 1/(5
v :_3(595/2(2,(1)_93/2(21(1)'092 , (51
1.2 g=1 > A
1 and below the critical point,
0.8 -
g=1.2 q=0.8 S 51
o c vl 72 FQS/Z(unQ)- (52
0.4 Let us observe that the generalizgtloson entropy obeys
0.2 the third law of thermodynamics. In fact, in E¢52),
Os/2(2q,0) has a finite value that depends gnand the en-
03 o2 G s Tz tropy approaches zero in the limit of zero temperature.
_ _ As in ordinary Bose condensation, it is possible to show
FIG. 2. Same as Fig. 1 for the functi@g(z,q). that in g boson condensation a Clausius-Clapeyron equation

also holds, and first order phase transition occurs. In fact it is

3 easy to see that below the critical point the following equa-
U= > PV. (49 tion is satisfied:
dP| L, 53
We can calculate the critical temperature by using the dT <_Tvc’ (53)

same method as in the standard boson case. Comparing the

ratio of the critical temperatur@&? of the g-deformed gas wherev, is the critical specific volume defined as
with that of the standard boson, at the same density, we \3

find

VC:QS/Z(Zq q)’ (54

L4 is theg-deformed latent heat given by

T4 1) |23
_:< Gl ))) ' 50

Te 1 da(zq,9

5 Zy,
Lq:TAS: _TM, (55)

. : 2 Zq,
wheregs;(1)=2.61 is the value of the undeformed function 9329
whenz=1. In Fig. 3 we show the plot of the above ratio as g3ng As is the difference in specific entropy across the tran-
a functiong. We observe that the critical temperature of thesition region.

g boson is always higher than the standard boson, and for \we now proceed to calculate the heat capacity of dhe

q>1 there is a rapid increase of the critical temperafife poson gas, starting from the thermodynamic definition

for small values ofy. For example, fog=1.01, TJ increases

by 18%, and, fog=1.1, T increases by 75% with respect U

to the standard value. C"_a_T :
Applying the thermodynamic limit to the entropy of thje VN

boson in Eq.(29), we obtain the entropy per unit volume  For this purpose we first need the derivative of the fuga-

above the critical point with a structure similar to that of the city with respect toT (or B), keepingV andN constant. To

(56)

standard boson, apply the JD prescription described earlier in Sec. IV, we
start from the expression for the total number of particles
T.9/T, [Eg. (25)] and the identity(since the number of particles is
kept constant
2.2}
J 1_ K;
2r @Ei o9 1—qxi>_0’ 57
1.8 where k;=ze #¢. This identity can be rewritten according
1 el to our JD recipe as
IK; 1—k;
1.4¢ —Iplag ( ! ):0 58
2(9,8 Wlog 7o | =0, (58)
1.2f
and now, evaluating in the limi¥ —c, we obtain
0.8 0.9 1.1 1.2 4
1z| _31Dgsz0)
FIG. 3. The ratioTd/ T, of the deformed critical temperatufié 238 T2BR@a oo (59
and the undeformedg=1) T, as a function ofj. Blun 2B DPgsu(z,0)
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We shall now proceed to calculate the heat capacity. C/N
Using the discrete expression of internal enefg@g), Eq. 3
(56) can be expressed as

Cy=-p2 e

2.5
OK;j

L pagg 2K 60
‘aﬁ logq ™ i 9 1-gk;)’ (60 z k
1.5
Carrying out the limitv— c and utilizing Eqs(46) and(59),

we obtain the following expression for the specific heat per 1
particle above the critical point,

0.5
Cy| _152Dgriz,9) \
N >_Z O32(2.9) 0.5 1 1.5 2 75 T/Te
FIG. 4. The specific hea€, /N as a function ofT/TY for g
9 2D {Vg55(2,0) P{Vgs(2,9) _1.05. ‘

- , (6D
4 093A2,9) DWgyz,q) _ N _ _
higher critical temperature for smail (see Fig. 3. For this

and, similarly, the specific heat below the critical point, value of q the critical temperatur@{ is increased by 48%
relative to the standard boson case. We observe that for
15 zDgc”gm(z,q)IZ=Zq #1, the specific heat shows a discontinuaugoint beha-
=2 3y , (62)  vior. This is a characteristic of deformation, as has been
observed in other investigation3,14.

Using Egs.(61) and(62) we can calculate the jump in the
specific heatA(C, /N) at the critical temperature as a func-
tion of g. In Fig. 5 we plot this behavior. We observe that the
jump is an increasing function @f. Although the model that

Cy

N
<

wherev is the specific volume below the critical temperature
that can be expressed, by means of @&q), in terms of the
critical temperaturd . as follows:

312 we have investigated is based on the Hamiltonian of nonin-
\Y 1 T . ) . . .
_—— | — (63)  teracting particles, we note that the jump in the specific heat
A% Oa(z,0) | TY is of the order of the experimental value in the case of Bose

condensation if’Rb atomg 26].
The above expressions have the same structure as that of

the undeformed boson, but the difference arises from the
property zDg‘“)gn(z,q)#gn_l(z,q), where the equality is
true for an ordinary derivative only. From this observation it The outstanding problem in the theory gfbosons has
is easy to see that in the limit— 1 the specific heat reduces been the lack of a demonstration that the thermodynamic
to the well-known undeformed result. relations follow from theq calculus framework. In this pa-
As usual, the classical limit can be achieved consideringer, we have shown that the whole structure of thermody-
the limit z—0. In this limit the deformedy,(z,q) functions  namics is preserved if the ordinary derivatives are replaced
reduce to by the Jackson derivatives following the prescription de-
scribed in Sec. IV. We establish a fully consistent set of
q—1 relations between the thermodynamic functiofpartition
Iogq Z, (64) function, internal energy, and mean occupation numaed
this enables us to derive the entropy g@fbosons. The
and, from Eq.(61), the “classical” limit of the specific heat

VIl. CONCLUSION

gn(z,9)—

per particle number reduces to A Cy
C 3 1 N
et q . (65) 1.2}
N 2 logq

cl

As discussed before in the context of the entropy, dtuke-
formation also persists in the classical limit. 0.8¢
We expect small deviations from undeformed behavior in
the experimental observables; therefore, only valuegy of
close to the standard valug=1 are physically significant. A al
small deformation leads to a negligible departure from the
high temperature limit of the specific heat, but implies a
sharp deformation of the behavior of the specific heat in the

N

range of the critical temperature. To exemplify this feature,

L - : 1.05 1.1 1.15 12 4
in Fig. 4 we plot the specific heat as a functionTgfT{ for

g=1.05. We have chosen a value @fin the rangeq>1 FIG. 5. The jump in the specific heat(C,/N) at the critical

because this region appears particularly interesting with @&mperaturel? as a function ofy.
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g-deformed entropy so obtained has been shown to follow APPENDIX

from the deformed statistical weight as a consequence of the Here we present a derivation for the approximatiorof
g combinatorial calculus known in the literatuf21]. This P PP rq

. A | L

result represents a close connection between the quantu@?s'.c factorlal[_n]. _for Iarg_e n which is the analog Of. the

deformed algebra and the quantum statistical approach. irling approximation. Th|s_ S employed in _the derivation of
The expression for the entropy is nonextensive because gfﬁ fntropy In Sec. V. We limit our discussion 1o the case of

the nonadditive propert{6) of the g basic numbers. We find _ I .

that forq+ 1, the entropy remains deformed in the classical Starting from the def"."t'om“) of the.[x]! an_d using the

limit as is also true of the other thermodynamic functions.pmperty(lg) of the q basic number, it is possible write any

This can be understood by observing that the deformatiorr?rOdUCt factor contained in tie]! as follows:

arises from quantum groups but the nature of the deforma- [n]=[n],
tion is inherently contained in the theory. A similar feature is
found in the nonextensive Tsallis statistics and infinite statis- [n—1]=q Y[n]—-q %
tics where the deformation persists in the classical limit
[15,25. [n-2]=q7%n]-q *-q*,
In this framework, we have studied the basic properties of 3 !
the idealq Bose gas in the thermodynamic limit and the [n—=3]=q°[n]-q°-q"—q~,
phenomenon of-boson condensation. We find that the criti- : (A1)

cal temperature of thg boson is always higher than that of
the standard boson. The behavior of the specific heat exhibits
a discontinuity at the transition point, which is in qualitative
agreement, for values @f close to unity, with experimental
data in the case of a dilute gas of rubidium atdi26].

We observe that for an ideal Bose gase the specific heatis ~ [1]=q ""[n]-q "*'-q ""2—...—q~
continuous. On the basis of the Ginsburg-Landau theowy of ) )
points, a discontinuous behavior of the specific heat implie§or n>1, the leading term is seen to be
a broken symmetry in the transition characterized by an or- n-1
der parameter. The deformation of the algebragiboson ek n
theory implies a broken permutation symmetry of the stan- [n}t~[n]"q kz:O (1_ _n)’ (A2)
dard boson wave function. Therefore, the recent experimen-
tal data[26] can be interpreted as an indication of the effectswhere the first term arises from the product of the first term
due toq deformation in Bose-Einstein condensation, wherein each of the equationfAl), and the second term is the
the order parameter of the phase transition depends on  result of the sum of the dominant corrections.

k+1

[n—kl=q~"[n]-q*—q~*"*=-..—q74,

Although we employed the nonsymmetcdeformation The above equation can be rewritten as
in this investigation, all the results can be easily extended by
using the symmetriq calculus < q~1). We have confined [n]! %[n]nqn(nl)/z( 1— ﬂ) (A3)
our study to theq deformation of bosons. It may be worth- ' nl’

while to investigate the theory af fermions in this frame-

work. Taking the logarithm on both sides, we have
Our theoretical framework and the results appear to pro- 2
vide a deeper insight into the behavior of théoson gas. log[n]! ~n log[ n]— %logq— ﬂn (Ad)

We believe that the results derived here may be relevant to

future investigations, and may be of interest from theoretical _
as well as experimental point of view. where we observe that the last term, which follows from the

approximation: log(+n/q")~—n/q", is very small and sig-

nificant only forq very close to unity [g—1|<10 3). We

neglect this term in the derivation of the entropy in Sec. V.
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